Two papers accepted in ACM CIKM 2021
1
Title: AdaSim: A Recursive Similarity Measure in Graphs
Author: Masoud Rehyani Hamedani and Sang-Wook Kim
Abstract
In the literature, various link-based similarity measures such as Adamic/Adar (in short Ada), SimRank, and random walk with restart (RWR) have been proposed. Contrary to SimRank and RWR, Ada is a non-recursive measure, which exploits the local graph structure in similarity computation. Motivated by Ada’s promising results in various graph-related tasks, along with the fact that SimRank is a recursive generalization of the co -citation measure, in this paper, we propose AdaSim, a recursive similarity measure based on the Ada philosophy. Our AdaSim provides identical accuracy to that of Ada on the first iteration and it is applicable to both directed and undirected graphs. To accelerate our iterative form, we also propose a matrix form that is dramatically faster while providing the exact AdaSim scores. We conduct extensive experiments with five real-world datasets to evaluate both the effectiveness and efficiency of our AdaSim in comparison with those of existing similarity measures and graph embedding methods in the task of similarity computation of nodes. Our experimental results show that 1) AdaSim significantly improves the effectiveness of Ada and outperforms other competitors, 2) its efficiency is comparable to that of SimRank* while being better than the others, 3) AdaSim is not sensitive to the parameter tuning, and 4) similarity measures are better than embedding methods to compute similarity of nodes.
2
Title: ALADDIN: Asymmetric Centralized Training for Distributed Deep Learning
Author: Yunyong Ko, Kibong Choi, Hyunseung Jei, Dongwon Lee and Sang-Wook Kim
Abstract
To speed up the training of massive deep neural network (DNN) models, distributed training has been widely studied. In general, a centralized training, a type of distributed training, suffers from the communication bottleneck between a parameter server (PS) and workers. On the other hand, a decentralized training suffers from increased parameter variance among workers that causes slower model convergence. Addressing this dilemma, in this work, we propose a novel centralized training algorithm, ALADDIN, employing “asymmetric” communication between PS and workers for the PS bottleneck problem and novel updating strategies for both local and global parameters to mitigate the increased variance problem. Through a convergence analysis, we show that the convergence rate of ALADDIN is O(1 ønk ) on the non-convex problem, where n is the number of workers and k is the number of training iterations. The empirical evaluation using ResNet-50 and VGG-16 models demonstrates that (1) ALADDIN shows significantly better training throughput with up to 191% and 34% improvement compared to a synchronous algorithm and the state-of-the-art decentralized algorithm, respectively, (2) models trained by ALADDIN converge to the accuracies, comparable to those of the synchronous algorithm, within the shortest time, and (3) the convergence of ALADDIN is robust under various heterogeneous environments.